Setting Standards for Excellence

ENGINEERING DEPARTMENT

BULLETIN

No. 71

June 1965
Revised September 9, 2004
(Reaffirmed 12/2011)

KNOCKOUT DIAMETERS AND FITTING DIMENSIONS TO ASSURE MECHANICAL AND ELECTRICAL CONTINUITY

INTRODUCTION:

The Joint Sections Committee on Knockout Diameters and Fitting Dimensions reviewed the existing industry practices and standards for knockout diameters and conduit fittings, and developed a table of dimensional relationships which assure no opening in the enclosure at the conduit entrance under normal conditions. Any situation which might result in an opening at the conduit entrance when a maximum size knockout and a minimum size locknut or bushing are combined with maximum off-centering of the conduit may be corrected by a minor readjustment of the conduit.

The Committee recommends that future designs of enclosures, which include knockouts be tooled to the nominal knockout diameters specified to allow a greater overlap for bushings or locknuts over the enclosure opening, particularly if the conduit cannot be kept centered in the opening.

The Committee also reviewed the dimensions of existing conduit fittings and current installation practices, and concluded that there is no reasonable and practical way to control the maximum penetration of fittings or conduit and bushings into an enclosure when more than one conduit enters the enclosure. The solution to this problem lies with good work practices; what is reasonable penetration in one enclosure may be unacceptable in another.

GUIDELINES:

The following dimensions have been developed by the Joint Sections Committee on Knockout Diameters and Fitting Dimensions and approved by the Codes and Standards Committee as a proposal to be considered by NEMA Sections for inclusion in existing standards publications.

Distribution List:

Standards and Conformity Assessment Policy Committee
Codes and Standards Committee
NEMA Executive Staff

Fig. 71-1
Metallic Bushing

Rigid Conduit or Conduit Fitting
Figure 71-2
Nonmetallic Bushing with
Locknut Inside of Enclosure

Fig. 71-3
Minimum Overlap Over
Nominal Knockout

Table 71-1A
Knockout Diameters ${ }^{\text {B) }}$

Conduit Size		Knockout Diameter ${ }^{\text {E) F) }}$					
		Minimum		Nominal		Maximum	
Column 1		Column 2		Column 3 Dimension K		Column 4	
Trade Size	Metric Designator	In	mm	in	mm	in	mm
1/2	16	0.859	21.82	0.875	22.23	0.906	23.01
3/4	21	1.094	27.79	1.109	28.17	1.141	28.98
1	27	1.359	34.52	1.375	34.93	1.406	35.71
1-1/4	35	1.719	43.66	1.734	44.04	1.766	44.86
1-1/2	41	1.958	49.73	1.984	50.39	2.016	51.21
2	53	2.433	61.80	2.469	62.71	2.500	63.50
2-1/2	63	2.938	74.63	2.969	75.41	3.000	76.20
3	78	3.563	90.50	3.594	91.29	3.625	92.08
3-1/2	91	4.063	103.20	4.125	104.78	4.156	105.56
4	103	4.563	115.90	4.641	117.88	4.672	118.67
5	129	5.625	142.88	5.719	145.26	5.750	146.05
6	155	6.700	170.18	6.813	173.05	6.844	173.84

Table 71-1B
COMPATIBILITY OF KNOCKOUT DIMENSIONS WITH LOCKNUTS AND BUSHINGS ${ }^{\text {B) }}$

Conduit Size		Metallic Bushing With or Without Insulating Throat See Fig 71-1				Nonmetallic Bushing with Locknut on Inside of Enclosure See Fig 71-2			
		Diameter at Flange Minimum		Overlap over Nominal Knockout Minimum ${ }^{\text {F }}$)		Covering Diameter Of Locknut Minimum		Overlap over Nominal Knockout Minimum ${ }^{\text {F }}$)	
Column 1		$\begin{gathered} \text { Column } 5 \\ \text { Dim B } \end{gathered}$		$\begin{gathered} \text { Column } 6 \\ \operatorname{Dim} X \end{gathered}$		$\begin{gathered} \text { Column } 7 \\ \text { Dim B } \end{gathered}$		$\begin{gathered} \text { Column } 8 \\ \text { Dim X } \end{gathered}$	
Trade Size	Metric Designator	in	Mm	in	mm	in	mm	In	mm
1/2	16	1.00	25.4	0.033	0.84	. 937	23.80	0.001	0.03
3/4	21	1.23	31.24	0.021	0.53	1.189	30.20	0.000	0.000
1	27	1.54	39.12	0.040	1.02	1.485	37.72	0.013	0.33
1-1/4	35	1.92	48.77	0.045	1.14	1.859	47.22	0.015	0.38
1-1/2	41	2.18	55.37	0.045	1.14	2.109	53.57	0.010	0.25
2	53	2.68	68.07	0.047	1.19	2.635	66.93	0.025	0.64
2-1/2	63	3.20	81.28	0.053	1.35	3.156	80.16	0.030	0.76
3	78	3.83	97.28	0.056	1.42	3.812	96.82	0.046	1.17
3-1/2	91	4.40	111.76	0.060	1.52	4.343	110.31	0.032	0.81
4	103	4.94	125.48	0.062	1.57	4.890	124.21	0.037	0.94
5	129	6.05	153.67	0.071	1.80	6.062	153.97	0.077	1.96
6	155	7.20	182.88	0.081	2.06	7.110	180.59	0.035	0.89

Table 71-1C METALLIC CONDUIT (IMC OR RIGID) DIMENSIONS FOR REFERENCE

Conduit Size	Major Diameter of External Thread				
	Minimum ()		Maximum $^{\text {D) }}$		
Column 1		Column 9 Dim P		Column 10	
Trade Size	Metric Designator	in	mm	in	mm
$1 / 2$	16	0.815	20.70	0.855	21.72
$3 / 4$	21	1.029	26.14	1.066	27.08
1	27	1.290	32.77	1.331	33.81
$1-1 / 4$	35	1.638	41.61	1.676	42.57
$1-1 / 2$	41	1.878	47.70	1.916	48.67
2	53	2.352	59.74	2.399	60.93
$2-1 / 2$	63	2.843	72.21	2.904	73.76
3	78	3.469	88.11	3.535	89.79
$3-1 / 2$	91	3.970	100.84	4.040	102.62
4	103	4.466	113.44	4.545	115.44
5	129	5.530	140.46	5.619	142.72
6	155	6.587	167.31	6.691	169.95

Notes to Tables 71-1A, 71-1B, 71-1C

A) Dimensional changes in Columns 3 (Dim. K), 5 (Dim. B) and/or 7 (Dim. B), and 9 (Dim. P), may cause an incompatible assembly.
B) These dimensions are for knockout diameters for single or concentric types only and exclude any projection of breakout ears or tabs.
C) This dimension is the nominal major diameter of the thread at El (Ref: Fig. 4-7 of NEMA Standards Publication No. FB 1) or the nominal diameter or the intermediate metal conduit (Ref: UL 6, ANSI/UL 514, UL 1242), whichever is less.
D) The maximum diameter of rigid conduit (Ref: ANSI C80.1).
E) Dimensions for trade sizes of $1 / 2$ through 1-1/4 (metric designator 16 through 35) are from Table 20.2 of UL 514. Minimum dimension for larger sizes is necessary to clear the maximum diameter of the external thread (i.e., Col. 1 is greater than Col. 10).
F) The stated values are calculated: the minimum overlap ($\operatorname{Dim} \mathrm{X}$) equals the minimum diameter (at flange or outer diameter of locknut) (Dim. B), minus the minimum major diameter ($\operatorname{Dim} P$), divided by 2, minus the conduit clearance ($\operatorname{Dim} \mathrm{C}$); where Dim C equals the nominal knockout diameter (Dim K).
The relationship is given by the following equation (refer to Figure 71-3):

$$
X=\frac{B-P}{2}-(K-P)
$$

